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at finite spatial resolution, no matter how nonlinear a func-
tional the Hamiltonian is.Hamiltonian partial differential equations often have implicit con-

servation laws—constants of the motion—embedded within them. The trivial prototype for a Hamiltonian partial differen-
It is not, in general, possible to preserve these conservation laws tial equation is the linear advection equation
simply by discretization in conservative form because there is fre-
quently only one explicit conservation law. However, by using
weighted residual methods and exploiting the Hamiltonian structure ­u

­t
5

­u
­x

. (1)
of the equations it is shown that at least some of the conservation
laws are preserved in a method of lines (continuous in time). In
particular, the Hamiltonian can always be exactly preserved as a This equation is, of course, in the form of a classic hyper-
constant of the motion. Other conservation laws, in particular linear

bolic conservation law; thus, the linear advection equationand quadratic Casimirs and momenta, can sometimes be conserved
is simply a statement of the conservation of ‘‘mass’’too, depending on the details of the equations under consideration

and the form of discretization employed. Collocation methods also e u dx, so that
offer automatic conservation of linear and quadratic Casimirs. Some
standard discretization methods, when applied to Hamiltonian prob-
lems are shown to be derived from a numerical approximation to d

dt
Ey

2y
u dx 5 0. (2)

the exact Poisson bracket of the system. A method for the Vlasov–
Maxwell equations based on Legendre–Gauss–Lobatto collocation
is presented as an example of these ideas. Q 1996 Academic Press, Inc. But, assuming that everything decays quickly as uxu R y,

any classical solution of Eq. (1) also conserves ‘‘energy’’
e u2 dx, and indeed, it conserves e un dx for any n; that is,

1. INTRODUCTION

Some partial differential and integro-partial differential d
dt

Ey

2y
un dx 5 0. (3)

equations of evolution have an underlying Hamiltonian
structure [1–4] that is responsible for the existence of inter-

These constants of motion can be identified with algebraicesting conservation laws. Since the Hamiltonian structure
features of the Hamiltonian structure that underlies theof these equations is tied closely to the physical system
linear advection problem; the philosophy presented in thisthat they represent it would seem prudent to retain as much
paper is to exploit this structure as much as possible inof this structure as possible when developing numerical
deriving (continuous in time) numerical methods to ensuremethods to discretize such problems. Ideally, we should
that the numerical approximation has something like Ham-like to be able to develop semi-discrete methods—
iltonian structure and to ensure that this structure is closelycontinuous in time—that are finite dimensional Hamilto-
enough related to its continuous cousin that it preservesnian systems; these might then be fully discretized with
some of the constants of the motion.either symplectic or energy conserving time discretization

It is important to note that the conservation laws in Eq.methods [5–8]. In this paper the less ambitious goal of
(3) for n . 1 are not explicit; Eq. (1) is a hyperbolicpreserving some of the constants of the motion from the
conservation law for conservation of mass, but we do notcontinuous problem will be pursued; for example, I will
have separate hyperbolic conservation laws for conserva-show that a properly formulated weighted residuals
tion of ‘‘energy’’ e u2 dx or for the conservation ofmethod can always exactly conserve the Hamiltonian, even
e u3 dx, whatever that is. This is typical of Hamiltonian
partial differential equations; unlike, for example, the* Supported by NSF Grants CCR-9110352 and ECS-9358344. E-mail:

hagar@umich.edu. Navier–Stokes equations which include explicit equations
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for conservation of mass, momentum, and energy, Hamil- laws. A very brief review of the pertinent Hamiltonian
structure for autonomous isolated systems is presentedtonian systems often have conserved quantities—also

called constants of motion—that are direct consequences here. All of the material in this section can be found in
standard texts on Hamiltonian systems (see, for example,of the governing equation, but not expressed as separate

conservation laws. For example, the conservation of the Goldstein [9], Olver [10], and Marsden and Ratiu [11]).
The problems of interest are evolution equations forquantities e un dx for n . 1 is a consequence of Eq. (1),

but their conservation cannot be guaranteed simply by a system state vector u(t), which can represent several
functions of several independent variables besides time.discretizing the equation in conservative form. For exam-

ple, the upwind difference on a uniform grid of unit This state is assumed to satisfy an evolution equation of
the formspacing,

­u
­t

5 I(u)
dH

du
(u), (5)

dui

dt
5 ui11 2 ui , i 5 2y ? ? ? y, (4)

where I(u), for a fixed u, is a linear operator that is anti-conserves oi ui , but not oi u2
i ; similarly, the central differ-

symmetric with respect to an inner product k , l, andence conserves both these sums, but not oi u3
i . The advan-

dH /du is the variational derivative of a real valued nonlin-tage of the central difference, in this respect, comes about
ear functional H , called the Hamiltonian of the system.because it happens to retain more of the Hamiltonian struc-
This derivative is the function dH /du that satisfiesture than did the forward difference.

In the abstract, Hamiltonian systems are basically built
out of two things: a functional of the system state called

lim
«R0

H (u 1 «h) 2 H (u)
«

5 KdH

du
, hL (6)the Hamiltonian—often but not necessarily the physical

energy in the state—and a bilinear operator called a Pois-
son bracket that can build a new functional of system state for each arbitrary perturbation h. This essentially plays the
from two old ones. The key point of this paper is that we role of gradient of the Hamiltonian functional H . It can
should focus on the bracket and discretize it, producing generally depend explicitly on u and on all of the indepen-
thereby a ‘‘numerical bracket’’ which can be used to build dent variables on which u depends, excepting only time
a Hamiltonian-like system on a finite dimensional space (this is the autonomous case; many of the ideas presented
of numerical degrees-of-freedom. By examining the prop- in this paper also apply to the nonautonomous case, but
erties of this discretization of the bracket we can determine this is not further discussed). For example, Eq. (1) (with
beforehand if certain conservation laws will be preserved, u(x, t) R 0 as uxu R y) is in the form of Eq. (5), with
in much the same way that discretization of hyperbolic I 5 ­/­x and
conservation laws in conservative form preserves their con-
servative structure.

H (u) 5
1
2
Ey

2y
u2 dx (7)The purpose of this paper is therefore to examine how

the conserved quantities—and particularly the Hamilto-
nian itself—of Hamiltonian partial differential equations which has dH /du 5 u.
can be preserved in weighted residual and collocation Now, suppose that u(t) represents a solution of Eq. (5),
methods by examining the properties of the Poisson and let F be any (generally nonlinear) functional of u;
bracket. I believe that this study provides some insight into then we easily compute that
why some methods simultaneously preserve several of the
constants of the motion of Hamiltonian PDEs while others d

dt
F (u(t)) 5 KdF

du
(u(t)),

du
dtL

(8)

do not, and it thereby provides us with a set of ideas
on how to develop conservative methods for Hamiltonian
problems—what basis functions or degrees of freedom to

5 KdF

du
(u(t)), I (u(t))

dH

du
(u(t))L.choose—or how to recognize the conservative Hamilto-

nian structure in standard methods.

So consider the creature hh , jj, called the bracket, which
2. BRACKETS takes any two functionals, F and G , and builds a new one,

hhF , G jj according to the formulaThe methods to be presented in this paper are based on
purposefully exploiting the structure of Hamiltonian PDEs
as Hamiltonian PDEs, rather than exploiting some other hhF , G jj(u) 5 KdF

du
(u), I (u)

dG

du
(u)L. (9)

feature such as their structure as hyperbolic conservation
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Equation (8) says that, in terms of this bracket, the rate constants of motion M that are neither the Hamiltonian
nor a Casimir are generally called momenta. There is aof change of a functional F along a solution of Eq. (5) is

given by known correspondence between symmetries of the Hamil-
tonian and the momenta (see, e.g., [9–11]); the classical
example of this is the linear momentum of a particle in ad

dt
F (u(t)) 5 hhF , H jj(u(t)). (10) mechanical system, which is conserved provided only that

the Hamiltonian for the system is invariant under the group
of translations in space.Because of the properties of I (u), and of the variational

The simplest examples of Hamiltonian partial differen-derivative, the bracket has the following three properties:
tial equations are based on the bracket

hhaF 1 bG , H jj 5 ahhF , H jj 1 bhhG , H jj (11)
hhF , G jj 5 Ey

2y

dF

du
­

­x
dG

du
dx (15)hhF , G jj 5 2hhG , F jj (12)

hhFG, H jj 5 F hhG , H jj 1 G hhF , H jj. (13)
(assuming rapid decay as uxu R y). The functional
H LA(u) 5 e u2/2 dx, with dH LA/du 5 u, is then the Hamil-Thus, this bracket is bilinear (Eq. (11)), it is anti-symmetric
tonian for the linear advection dynamics(Eq. (12)), and it satisfies the chain rule (Eq. (13)). Each

of these properties is inherited: bilinearity from the inner
product, anti-symmetry from I , and the chain rule from ­u

­t
5

­

­x
dH

du
5

­

­x
u. (16)

the variational derivative. If, in addition, the bracket satis-
fies the rather nontrivial Jacobi condition

Similarly the Hamiltonian H NA(u) 5 e u3/6 dx, with
dH NA/du 5 u2/2, generates the nonlinear advection dy-hh hhF , G jj, H jj 1 hh hhG , H jj, F jj 1 hh hhH , F jj, G jj 5 0
namics(14)

for all functionals F , G , H then the bracket is called a ­u
­t

5
­

­x
dH

du
5

­

­x
u2

2
5 u

­u
­x

(17)
Poisson bracket. In this paper I shall be concerned with
problems that can be written in the form of Eq. (5) and

while this same bracket structure and the Hamiltonianfor which I generates a bracket that has the properties
of Eqs. (11)–(13), but not necessarily Eq. (14). Authentic
Hamiltonian systems are based on true Poisson brackets

H KdV(u) 5 Ey

2y
F1

6
u3 2

1
2 S­u

­xD2G dx (18)which must satisfy Eq. (14). But while the Jacobi condition
is responsible for much of the analytic beauty of Hamilto-
nian systems, the Jacobi condition is not crucial to the produce the dynamics
existence of constants of the motion, and it is at times not
satisfied by the brackets presented in this paper. In this
paper the goal is conservative evolution, so the Jacobi ­u

­t
5

­

­x
dH

du
5

­

­x Su2

2
1

­2u
­x2D5 u

­u
­x

1
­3u
­x3 (19)

condition will not be needed.
For a given Hamiltonian H , any other functional F that

which is the Korteweg–de Vries (KdV) equation [12].satisfies hhF , H jj 5 0 is obviously a constant of motion
These three systems–linear advection, nonlinear advec-defined by that Hamiltonian; for, as we see from Eq. (10),

tion, and the Korteweg–de Vries equation—can all bethe quantity F (u(t)) then equals F (u(0)). For evolution
written as hyperbolic conservation laws, and thus all threesystems derived from brackets these constants can be clas-
conserve the ‘‘mass’’ functional N (u) 5 ey

2y u dx. Fromsified into three types: the Hamiltonian, Casimirs, and mo-
the Hamiltonian systems perspective we see thatmenta. The Hamiltonian H has a special place among the
d N /du 5 1, so for any functional Gconstants of the motion because its gradient defines the

evolution of the system; it is constant simply because the
bracket is anti-symmetric: hhH , H jj 5 2hhH , H jj 5 0. hh N , G jj 5 2hhG , N jj 5 2 E dG

du
­

­x
d N

du
dx 5 0. (20)

On the other hand, with Hamiltonian PDEs it is common
for the bracket to be degenerate, so that there is a func-
tional C that satisfies hhC , G jj 5 0 for all other functionals Thus, N is a Casimir; it is conserved no matter what is

used for the Hamiltonian. However, a direct computationG . In this case C is conserved no matter what the Hamilto-
nian is; such constants are called Casimirs. Finally, other will show that H LA is a momentum for both the nonlinear
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advection equation and the KdV equation. Note that This can always be arranged, of course, through a Gram–
Schmidt process. From these functions we can construct ae u2/2 dx is often called ‘‘energy’’ because it is a quadratic

quantity, like the Hamiltonian of a harmonic oscillator, projection operator P,
but formally it is a momentum, a quantity conserved be-
cause of a symmetry of the Hamiltonian, in this case invari- Pu 5 kfi, ulfi , (23)
ance under spatial translations. Thus, the structure of these
equations as hyperbolic conservation laws tells us only and its adjoint P†,
about a single conserved quantity, the Casimir N , but in
fact they conserve quantities other than this as well; and P†u 5 kfi , ulfi. (24)
while discretizing them in conservative form will ensure
that N is conserved, doing so does not guarantee the

A standard (continuous in time) weighted residualsconservation of their respective Hamiltonians, or of the
method for Eq. (5) is then formulated by projecting themomentum H LA.
initial data onto the expansion functions U(0) 5 Pu(0)The theme of this paper is that it is possible, in general,
and similarly projecting Eq. (5) to getto discretize Hamiltonian partial differential equations so

that the resulting numerical system can, in the limit of
continuous time, be derived from a bracket. Since it is this ­U

­t
5 PI (U)

dH

du
(U). (25)

bracket structure that is responsible for constants of the
motion in Hamiltonian systems, this view of discretization

Unfortunately, this system of evolution equations cannot,provides a great deal of insight into how to discretize so that
in general, be derived from a bracket, so the Hamiltonianconserved quantities are retained in the numerical method.
H is not, in general, conserved by this weighted residuals
discretization.3. THE NUMERICAL BRACKET FOR A WEIGHTED

The heart of this paper is to point out that a trivialRESIDUALS METHOD
modification of Eq. (25) produced by placing the adjoint
projection operator P† on the right of the variational deriv-Suppose that we wish to develop a weighted residuals
ative of H in Eq. (25),method for the Hamiltonian equation

­U
­t

5 PI (U)P† dH

du
(U), (26)­u

­t
5 I (u)

dH

du
(u) (21)

is in fact derived from the bracketbased on some finite expansion of the sort u P U 5 aifi

(the summation convention is in effect, with summation
implied over any index repeated in both super- and sub-

[F , G ]w 5 KdF

du
, PI (u)P† dG

duL (27)script). Here ai is a time-dependent expansion coefficient
and fi is an expansion function which depends on the
independent variables—other than time—of the problem. (the subscript ‘‘w’’ denoting weighted residuals). This nu-
We can, of course, view this problem as one of finding a merical bracket is clearly bilinear and satisfies the chain
set of ODEs for the expansion coefficients ai. In a weighted rule, and, because I is sandwiched between P and P†, this
residuals method each of the expansion coefficients is ide- bracket also retains the anti-symmetry of I . While this
ally a linear functional of u, ai 5 kfi, ul, where fi is a bracket will not necessarily satisfy the Jacobi identity, it
weight function for the method. But in a Hamiltonian does contain all the properties of a bracket, Eqs. (11)–(13),
problem the time rate of change of functionals is deter- that are useful in seeking constants of the motion.
mined by the bracket; one approach to the problem, and The philosophical difference between Eq. (25) and Eq.
the one put forward here, is therefore to simply modify (26) is this: in a standard weighted residuals method we
the exact bracket hh , jj so that it acts not on functionals project the rate of change of u onto the subspace that is
of the continuous state u, but on the discrete state repre- spanned by the expansion functions, while in Eq. (26) we
sented by the expansion coefficients ai. replace I by PI P† in order to retain the anti-symmetry

So let us begin with a set of N expansion functions of the operator I in the numerical method. Both ap-
hfiji51???N and a set of N weight functions hfiji51???N , which proaches are intended to derive an approximate descrip-
are required to satisfy the bi-orthonormality conditions tion of the dynamics that leave a subspace invariant, but

in Eq. (26) we may (although not necessarily) accept some
kfi, fjl 5 d i

j . (22) extra error (due to P†) in order to produce a numerical
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description that can be derived from a bracket, and thereby CP 3.5. A quadratic momentum with d M /du 5 u is
conserved by Eq. (26) if P 5 P† and PI (U)U 5 I (U)Uachieve conservation of the Hamiltonian.

Because Eq. (26) inherits its bracket structure from the for all U in the range of P.
bracket of the original system, Eq. (5), it is easy to make Proof. Now we have PI (U)P†d M /du 5
some observations about its conservation properties, i.e., PI (U)Pd M /du 5 PI (U)U 5 I (U)U, for U in the
to note how it can preserve some constants of the motion. range of P. And so d M /dt 5 kU, PI P†dH /dul 5
The most trivial, yet most important, of these conservation

2kdH /d, I Ul 5 0.
properties (CP) is:

So it is possible in general to write a weighted residualsCP 3.1. Equation (26) always conserves the Hamilto-
type method in such a way that at least the Hamiltoniannian H .
and possibly several other constants of the motion are

Proof. This follows trivially from the fact that the nu- preserved, and this is true independent of the details of
merical bracket [ , ]w is anti-symmetric. the Hamiltonian of the system being treated. Sometimes

these methods are standard weighted residuals methods;This means that, in the limit of continuous time but
when PI (U) 5 PI (U))P† Eqs. (26) and (25) are identical,otherwise finite discretization, the Hamiltonian can be ex-
otherwise they are not. The conservation of quadratic mo-actly conserved, no matter how nasty a nonlinear func-
menta and Casimirs (CP 3.3 and CP 3.5) have a commontional it may be.
requirement that the projection be self-adjoint P 5 P†;The next two conservation properties deal with two spe-
this is reminiscent of a known result for weighted residualscial cases in which Casimirs are relatively easy to retain:
methods [13].

CP 3.2. A linear Casimir C (u) 5 kc, ul of a bracket It is standard in finite dimensional Hamiltonian mechan-
hh , jj is also a Casimir of the numerical bracket [ , ]w if ics to write a bracket in terms of its structure functions,
P†c 5 c. which are the brackets between all pairs of degrees of

freedom. For the expansion coefficients ai these structureProof. Such a Casimir obviously satisfies PI (u)P†dC /
functions are denoted [ai, a j]w . This function relates thedu 5 PI (u)c. But since C is a Casimir of the exact bracket
time rate-of-change of the dynamical variable ai to thehh , jj it must be that I (u)c 5 0, and so [G , C ]w 5 0 for
rate of change of the Hamiltonian with respect to aj , andany functional G .
normally it is a function of the system state. Using the fact

CP 3.3. A quadratic Casimir C (u) with dC /du 5 u is that P† is a projection, these structure functions can be
constant along solutions of Eq. (26) if P 5 P†. evaluated from

Proof. In general,
[ai, a j]w(a) 5 kfi, I (akfk)f jl, (28)

d
dt

C (U(t)) 5 2[H , C ]w(U(t))
where a 5 ha1, a2, ..., aNj is the vector of expansion coeffi-
cients. Note that these are in general functions of the

and in the present case PI (U)P†dC/du 5 PI (U)PU. But expansion coefficients a because I is such a function. The
PU 5 U since P is a projection, so we have PI (U)P†dC / utility of the structure functions is that they allow Eq. (26)
du 5 PI (U)U 5 0 since C is a Casimir of the exact bracket. to be rewritten as a system of ODEs in slightly different
Hence [H, C ]w(U(t)) 5 0, which implies dC/dt 5 0. form. We start from Eq. (26) in the form

The last two conservation properties provide similar re-
sults for momenta: dai

dt
5 Kfi, PI (akfk)P† dH

du
(akfk)L, (29)

CP 3.4. A momentum M (u) 5 km, ul that is linear in
u is conserved by Eq. (26) if P†m 5 m and PI ((U)m 5 where U has been rewritten as the explicit expansion akfk
I (U)m for all U in the range of P. (and remember the summation convention). But from the

Proof. In this case PI (U))P†m 5 I (U)m, and so definition of the variational derivative

d M

dt
5 Km, PI P† dH

du L5 2 KdH

du
, PI P†mL Kfj ,

dH

du
(akfk)L5 lim

«R0

H (akfk 1 «fj) 2 H (akfk)
«

(30)

5
­

­a j H (akfk)5 2 KdH

du
, ImL5 0

since M is a momentum of the continuous system. so
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structure functions of the numerical bracket using Eq. (28)
P† dH

du
(akfk) 5

­

­a j H (akfk)f j (31) and discover that

(remember to sum over j). Using the linearity of I and [C n, C m]w 5 [S n, S m]w 5 0

(35)noting that ­H /­a j are scalars, it then follows that
[C n, S m]w 5 2[S n, C m]w 5

n
f

dnm.
dai

dt
5 kfi, I (akfk)f jl ­

­a j H (akfk) (32)

Because these structure functions are independent of C n

and S n this bracket actually satisfies the Jacobi identityor
too; indeed, it is almost in canonical form. The evolution
equations derived from this bracket and any Hamiltoniandai

dt
5 [ai, a j]w

­H

­a j , (33) H are then

which is in the form of a classical finite dimensional Hamil- dC n

dt
5

n
f

­H

­S n

(36)
tonian system in noncanonical coordinates. While algebrai-
cally equivalent to Eq. (26), this form of the equations
emphasizes a different view of the weighted residuals dS n

dt
5 2

n
f

­H

­C n
method; it forces attention on the bracket between the
weight functions, [ai, a j], as the quantities that describe a

which is quite obviously in Hamiltonian form with S n theclass of numerical methods applicable to a problem derived
variable dynamically conjugate to C n.from a particular bracket.

We see immediately that, no matter what the Hamilto-The developments above emphasize that it is always
nian is, C0 is a Casimir and is exactly conserved by thepossible to write down a weighted residuals method in
numerical approximation; physically it is the mass functiona form that can be derived from a numerical bracket
N 5 e u dx, and its conservation was inevitable from CPand which, therefore, exactly conserves the Hamiltonian
3.2. Also, CP 3.5 applies, so that H LA 5 e u2 dx will beof the exact system. Because the numerical bracket is
conserved by the numerical method if it is conserved byderived from the true bracket using projection operators
the exact system. And, of course, no matter what the Ham-it is also fairly straightforward to see how some other
iltonian H is, it will also be conserved according to CPconserved quantities—Casimirs and momenta—can
3.1. Furthermore, for the projection P and operator I atsometimes be retained by the weighted residuals method
hand we have PI P† 5 PI , and the method of Eq. (26)as well.
is therefore identical to the standard weighted residuals

3.1. Example: Fourier–Galerkin Methods method (in this case the Fourier–Galerkin spectral
method) given in Eq. (25), which therefore has a numericalThe ideas developed above in the abstract will now be
Poisson bracket hidden behind it.applied to the Fourier–Galerkin method; in this section we

Thus, without doing any specific checking, we immedi-shall see the highly conservative nature of Fourier spectral
ately know that a standard Fourier–Galerkin spectralmethods as applied to advection problems and show that
method applied to the linear advection equation, to thethis conservation comes about because these methods, ap-
nonlinear advection equation, or to the KdV equation willplied to these problems, in fact, yield finite dimensional
exactly conserve e u dx, e u2 dx, and their respectiveHamiltonian systems of the form given in Eq. (26) or
Hamiltonians (in the limit of continuous time, of course).(33).
Indeed, the conclusion holds for any system derived fromWe begin with the Poisson bracket given in Eq. (15),
a Hamiltonian of the form H (u) 5 e g(u, ux , uxx , ...) dxwhere I 5 ­/­x, and use periodic boundary condi-
whose integrand is explicitly independent of x (necessarytions. The obvious set of expansion functions are then
and sufficient for the momentum H LA to be conserved);the sines and cosines, so let us represent the projections
that is, the Fourier–Galerkin spectral method applied toP 5 P† as
any PDE of the form

Pu 5
1
2

C0 1 ON
n51

C n cos(nx) 1 ON
n51

S n sin(nx), (34) ­u
­t

5
­

­x On50
(21)n ­n

­x n Dng(u, ux , uxx , ...), (37)

where C n 5 (1/f) ef

2f u(x) cos(nx) dx and S n 5 (1/f)
ef

2f u(x) sin(nx) dx. From these we can easily compute the where Dn g denotes the derivative of g with respect to its
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nth argument, will exactly conserve e u(x, t) dx, e u2(x, t) kCi , C jl P O
k

wkCi(xk)C j(xk) 5 d j
i . (39)

dx, and H itself.
It is especially interesting to note that the class of meth-

Letting C k
i 5 Ci(xk) and C ik 5 wijC k

j 5 Ci(xk) we can alsoods suggested in this section were actually used by Gardner
write this as[12] in his analytic development of the bracket, Eq. (15),

and Hamiltonian, Eq. (18), of the KdV equation.
kCi , C jl P kCi , C jlc 5 C k

i wklC jl 5 d j
i , (40)

4. BRACKETS FOR COLLOCATION METHODS
where k , lc represents the discrete ‘‘collocation’’ inner
product.Of course, a Fourier–Galerkin spectral method as de-

Now, let u 5 hu1, u2, ..., uNj nominally represent thescribed in Section 3.2 is not particularly efficient for the
values of u at the grid points hx1 , x2 , ..., xNj and expandsolution of nonlinear problems because the evaluation of
functions u and v as u P ulCl and v P v jCj . Thenthe nonlinear terms can be rather expensive; instead, Fou-

rier collocation is generally preferred. In a collocation
(I (u)v)ux5xi

P (I (ulCl)v jCj)ux5xi (41)
method the continuum of state variables u(x) is replaced
by the discrete set of values ui representing u(x) on a set

5 v j(I (ulCl)Cj(x))ux5xi
5 v jJi

j(u),of grid points xi . This can be understood as a weighted
residuals method using weight functions that are delta func-

where Ji
j(u) 5 I (ulCl)Cj(x)ux5xi

is the standard collocationtions located at the grid points, d(x 2 xi), or it can also
approximation to the linear operator I (u) based on thebe understood as a weighted residuals method based on a
cardinal functions Cj(x). The collocation bracket (subscriptdiscrete approximation to the inner product. The former
‘‘c’’) is then defined asapproach is not useful here since typically kd(x 2 xi),

Id(x 2 xj)l 5 0 if i ? j and is often undefined if i 5 j,
formally because d is not in the range of I . Therefore it

[F , G ]c 5
­F

­ui Jij(u)
­G

­u j , (42)is the latter approach, approximation of the inner product,
that will be exploited here. The key idea will be that a
collocation method can be fit within the bracket structure where
of a problem by replacing the continuum inner product by
a discrete quadrature rule and by replacing the operator Jij(u) 5 Ji

kw jk. (43)
I by an approximation J computed using data on the grid,
provided only that the approximation to I retains its anti- On the other hand, if the weight functions Ci(x) are put
symmetry under the quadrature formula chosen (which into the continuum bracket and the quadrature formula is
usually means that a discrete integration-by-parts rule used to estimate the integral there results
must hold).

Suppose that the inner product k , l can be approximated hhCi, C jjj P O
k

wkCi(xk)I (ulCl)C j(x)ux5xkusing a quadrature rule, so that

5 O
k

wkCi(xk)Jk
j (u)(w j)21

(44)
k f, gl P O

k
wk f(xk)g(xk), (38)

5 O
k

wk(wi)21 dik Jk
j (u)(w j)21

where the wk represent the quadrature weights on the grid
5 (w j)21Ji

j(u) 5 Jij(u) 5 [ui, u j]c .xk , and note that xk could represent a point in a one, two,
three, or more dimensional set of independent variables.
Also note that the quadrature weights will quite naturally So the structure functions Jij(u) of the collocation bracket,

Eq. (42), are simply approximations to the exact bracketsallow us to lower and raise indices using the diagonal tensor
wij 5 widi j and its inverse wij 5 (wi)21di j (no sum). Now between the weight functions C j. This is consistent with

Eq. (28) for the weighted residuals method; the structurelet Ci(x) represent a cardinal function for the grid, meaning
that Ci(xk) 5 dk

i , and define Ci(x) 5 wijCj(x). Note that functions of the bracket are equivalent to simply computing
the exact bracket between the approximate delta functionsthese functions satisfy Ci(xk) 5 wik 5 (wi)21dik so that as

the number of mesh points is increased and the quadrature Ci, but using the quadrature rule to approximate the in-
ner product.weights go to zero the functions Ci(x) will become more

and more delta-like. Together, Ci(x) and C j(x) provide a From the bracket and an approximation H̃ to the Hamil-
tonian we can then write down a set of discrete evolu-bi-orthonormal set of expansion and weight functions un-

der the discrete inner product; that is, tion equations
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dui

dt
5 Jij ­H̃

­u j . (45) [G , C̃ ]c 5
­G

­ui Jij(u)
­C̃

­u j 5
­G

­ui O
j

Ji j(u)wjc(xj)

5
­G

­ui O
j

Ji
j(u)c(xj) 5 0,However, in contrast to the weighted residuals methods

of Section 3, the anti-symmetry of the collocation bracket
is not automatic; the use of the quadrature rule and colloca- which shows that C̃ is a Casimir of the collocation
tion approximation to I could destroy the anti-symmetry. bracket.
This must be checked for each method under consider-

CP 4.3. Suppose that there is a Casimir C (u) 5ation, if conservation of the Hamiltonian is to be preserved.
(1/2)ku, ul. Then C̃ 5 ok wk(uk)2 is a Casimir of the colloca-

CP 4.1. In order for the collocation bracket to be anti- tion bracket.
symmetric it must be that for each i and j

Proof. In this case we have dC /du 5 u and so it must
be that I (ulCl)u jCj(x) 5 0. But this implies that 0 5

wi Ji
j(u) 5 2wj J j

i(u) (no sum). u j(I (ulCl)Cj(x))ux5xi
5 u jJi

j(u). Therefore,

In this case the Hamiltonian will be conserved. [G , C̃ ]c 5
­G

­ui O
j

Ji j(u)wju j 5
­G

­ui O
j

Ji
j(u)u j 5 0

Proof. If Jij(u) 5 2Jji(u) then the Hamiltonian will be
conserved since the collocation bracket will then be anti-

and so C̃ is a Casimir of the collocation bracket.
symmetric. But Jij(u) 5 Ji

k(u)w jk 5 (wj)21Ji
j(u) (no

sum), so for anti-symmetry we require (wj)21Ji
j(u) 5 Useful results for momentum conservation are not easily

2(wi)21J j
i(u), or wi Ji

j(u) 5 2wj Jj
i(u) for each i and j. derived because they depend on how the Hamiltonian is

approximated (which might be accomplished in several
One remark worth making here is that in collocation ways). The obvious choice of H (ulCl) as the Hamilto-

methods certain degrees of freedom ul can be associated nian—simply substituting the finite expansion into the ex-
with physical system boundaries at which, depending on act Hamiltonian—for use with a collocation bracket could
the problem being modeled, an exchange of conserved result in tightly coupled convolution sums due to nonlinear
quantities could take place with some external environ- terms, just as it can in the weighted residuals method. In
ment. A system will have the Hamiltonian as a constant order to gain any benefit from the collocation bracket over
of the motion only when it is isolated; when it is not we the weighted residuals method of Section 3 it is necessary
should expect the Hamiltonian (and other ‘‘constants’’) to to pay some attention to the treatment of nonlinear (really
change because of the exchange across these boundaries cubic and higher) terms in the Hamiltonian. An example
with the rest of the universe. I do not expect that the anti- will be presented below.
symmetry condition wi Ji

j(u) 5 2wj J j
i(u) should hold at

points xi on the boundary. Indeed, it is possible that Eq. 4.1. Example: Fourier Collocation
(45) will not apply at such points (e.g., inflow boundaries

In order to illustrate this let us develop a Fourier spectralwhere u is determined by boundary conditions and not
collocation method for the KdV equation with periodicthe evolution equation). We shall see some examples of
boundary conditions. The exact bracket is again definedthis later.
by I 5 ­/­x, so letWhile the collocation bracket is somewhat less forgiving

than the weighted residuals bracket, requiring an explicit
check on its anti-symmetry, it still has two nice conserva-

Ji
j 5 H(1/2)(21)i1j cot((i 2 j)f/N), i ? j,

0, i 5 j
(46)tion properties for Casimirs (even, in fact, when the bracket

is not anti-symmetric).

be the standard spectral collocation first differentiationCP 4.2. Suppose that C (u) 5 kc, ul is a linear Casimir,
matrix [14] for the points xi 5 i(2f/N), N even, i 5 0, 1,and suppose that c(x) is interpolated exactly, c(x) 5
2, ..., N 2 1, and let wi 5 2f/N be the trapezoidal ruleoi c(xi)Ci(x). Then C̃ 5 ok wkc(xk)uk is a Casimir of the
weights. The matrix Ji

j is clearly anti-symmetric, and thecollocation bracket.
weights are independent of the index, so CP 4.1 is satisfied
and the collocation bracket will be anti-symmetric. TheProof. Since C is a Casimir it must be that I (ulCl)c 5

0. Therefore, 0 5 I (ulCl)c 5 I (ulCl) oj c(xj)Cj(x) 5 oj resulting bracket will also have the functional Ñ 5
(2f/N) oi ui as a Casimir because the Fourier collocationc(xj)I (ulCl)Cj(x), and so 0 5 oj c(xj)Ji

j(u) for all mesh
points i. This then implies that exactly interpolates the constant function (CP 4.2). Ap-
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proximating the integral (using the quadrature rule) and achieved, was a fully discrete symplectic method, rather
than a conservative method, and in this they benefitedderivatives (using the collocation derivative) in the KdV

Hamiltonian, Eq. (18), results in a natural approximate from the trivial form of the exact bracket (in particular its
independence of u). When a conservative method is soughtHamiltonian
this is by no means a necessary assumption, as we shall
see in Section 5. Again, however, as in Section 3.1, I think

H̃ KdV 5
2f
N ON21

k50
S1

6
(uk)3 2

1
2 SON21

l50
Dx(k, l)ulD2D, (47) that the important point is that a standard numerical

method for a Hamiltonian problem can have a Hamiltonian
structure of its own, described by a numerical bracket and

where Dx(k, l) 5 Jk
l is written to emphasize that this is a an approximate Hamiltonian.

collocation derivative in x. Although other approximate
Hamiltonians could be used, this approximation results in 4.2. Legendre–Gauss–Lobatto Collocation
a derivative of H̃ with respect to the degrees of freedom,

As another example of the general method of derivation,
let us examine the nonlinear advection equation, but with-
out the assumption of periodic boundary conditions, bydH̃ KdV

du j 5
f
N

(u j)2 1
2f
N ON21

k50
Dx(k, j) ON21

l50
Dx(k, l)ul, (48)

using Legendre–Gauss–Lobatto collocation on the inter-
val 21 # x # 1. In this case the collocation points xi , i 5
0, 1, ..., N, will be the N 1 1 zeros of the polynomialwhich contains no convolution sums of nonlinear terms.

From the approximate Hamiltonian and Eq. (42) we then (1 2 x2) dPN/dx, where PN is the Nth Legendre polynomial,
and the quadrature weights will be wi 5 2/(N(N 1 1)have a collocation method,
P2

N(xi)) [17]. The cardinal functions are

dui

dt
5 ON21

j50
Dx(i, j) F1

2
(u j)2 2 ON21

k50
Dx(k, j) ON21

l50
Dx(k, l)ulG

Ci(x) 5
(1 2 x2) dPN/dx
N(N 1 1)PN(xi)

1
xi 2 x

(51)
(49)

(as is trivially verified from the differential equation5 ON21

j50

1
2

Dx(i, j)(u j)2 1 ON21

l50
Dxxx(i, l)ul, (50)

d((1 2 x2) dPN/dx)/dx 1 N(N 1 1)PN 5 0) and the colloca-
tion derivative is then given by the matrix

for KdV, in which Dx(i, j) 5 Ji
j is the usual first-order

collocation derivative matrix and Dxxx 5 Dx
3 is the usual

collocation third derivative matrix. Note that the antisym-
metry of Ji

j 5 Dx(i, j) has been used in going from the first
to the second form of this equation. The second form of

Ji
j 5 Dx(i, j) 55

PN(xi)
PN(xj)

1
xi 2 xj

, i ? j,

2N(N 1 1)/4, i 5 j 5 0,

N(N 1 1)/4, i 5 j 5 N,

0, i 5 j, i, j ? N, 0.

(52)this method is one that we might write down straight away;
it is a totally standard spectral collocation with the advec-
tive term treated in a conservative fashion [14, 15]. But
this latter form obscures the bracket structure which lies
behind the equation and thus it hides the conservation of

The Ji
j and weights wi obviously satisfy wi Ji

j 5 2wj Jj
i , forthe Hamiltonian. For Eqs. (49) and (50) do exactly con-

all i, j except i 5 j 5 0 or i 5 j 5 N (that is, everywhereserve the Hamiltonian H̃ KdV and also exactly conserve the
except the boundaries); this is an inevitable consequenceCasimir Ñ . This can be confirmed by direct calculation,
of the fact that Legendre–Gauss–Lobatto quadrature canbut by derivation of the method as a series of approxima-
exactly integrate a polynomial of order 2N 2 1. The failuretions to the true bracket and Hamiltonian, with the neces-
of the anti-symmetry condition in the bracket at the bound-sary properties of the bracket maintained at each step,
aries is physically correct because the system is not isolated;these conservation laws become automatic.
there are boundary terms that arise from integration byThis approach, based on discretization of the inner prod-
parts in the true bracketuct and I operator and approximation of the exact Hamil-

tonian by a quadrature formula, actually underlies the
method used by de Frutos et al. [16] for the good Bous-

hhF , G jj 5 E1

21

dF

du
­

­x
dG

du
dx

(53)
sinesq system, but in that paper the authors simply wrote
down the numerical bracket and approximate Hamiltonian
without suggesting that the idea in fact has applicability 5 2 E1

21

dG

du
­

­x
dF

du
dx 1 FdF

du
dG

duG1

21
.

beyond their specific problem. Their goal, successfully
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Thus, the true bracket is not really anti-symmetric because described above. In one spatial dimension the Vlasov–
Maxwell equations areof these boundary terms, and the same is true of the collo-

cation bracket. So in this case CP 4.1 will apply and the
Hamiltonian will be conserved, except for boundary terms. ­fa

­t
(x, v, t) 5 2v

­fa

­x
(x, v, t) 2

qa

ma
E(x, t)

­fa

­v
(x, v, t) (57)Similarly, because Nth-order polynomial interpolation can

exactly expand a constant, CP 4.2 applies, and a method
derived from the Legendre–Gauss–Lobatto collocation ­E

­t
(x, t) 5 24f O

a

qa Ey

2y
vfa(x, v, t) dv, (58)

bracket will have the functional N 5 oi wiui as a Casimir;
we can therefore conclude that this quantity will be a con-

where v represents an independent variable—physicallystant in the discrete method, except for boundary terms.
the velocity of particles—and a is a species index denotingLet us briefly examine these properties of a Legendre–
a charged particle species whose mass is ma and whoseGauss–Lobatto collocation method for the nonlinear ad-
charge is qa . These equations relate the density fa ofvection equation. The Hamiltonian can be approximated
charged particle species in the single particle phase spaceby H̃ NA 5 (1/6) oN

i50 wi(ui)3. The structure functions for
(x, v) to their self-consistent electric field, E. Physicallythe collocation bracket are Jij 5 (wj)21Ji

j , and so the semi-
the distribution functions fa and electric field E are con-discrete equation becomes
strained by Coulomb’s law

dui

dt
5 Jij ­H̃ NA

­u j 5
1
2 O

N

j50
Dx(i, j)(u j)2, (54) ­E

­x
(x, t) 5 4f O

a

qa Ey

2y
fa(x, v, t) dv. (59)

which is nothing unusual—it is a rather standard colloca- The physical boundary conditions that often apply to fation method for the nonlinear advection equation written are fa R 0 rapidly as uvu R y, fa(21, v, t) given for v . 0,
in conservative form. As such, it is not surprising that the and fa(1, v, t) given for v , 0; these boundary conditions
Casimir Ñ 5 oN

i50 wiui is conserved, in the sense that in x say that the distribution of particles flowing into the
region between x 5 21 and x 5 1 is specified. The bound-
aries could be spatial locations other than x 5 61, ofd Ñ

dt
5

1
2 O

N

j50
ON
i50

wi Ji
j(u j)2 5

1
2

(uN)2 2
1
2

(u0)2, (55)
course; this is simply a trivial matter of scaling and shifting.
In the development that follows I shall truncate the velocity
range and scale it into 21 # v # 1 as well; scale factorswhich is as it should be. It is less obvious from Eq. (54)
that result from such a scaling will not be written, however,and H NA is a constant, but this is obvious from the anti-
as they only serve to dirty the page. Physically a boundarysymmetric structure of the collocation bracket. A direct
condition at v 5 61 should specify the distribution func-calculation is therefore unnecessary, but easy because of
tions fa at ‘‘inflow’’ points, determined by the sign of qaE(x,the anti-symmetry condition wi Ji

j 5 2wj Jj
i for all i and j

t) at each point. In simulations one would most likelynot on the boundary, and yields
choose the maximum and minimum velocity for truncation
based on a knowledge of the fastest possible particle in
the system being simulated so that fa(x, 61, t) 5 0. If thisd Ñ NA

dt
5

1
4 O

N

i50
ON
j50

(ui)2wi Ji
j(u j)2 5

1
8

(uN)4 2
1
8

(u0)4. (56)
is true initially, at t 5 0, then it will be true for at least
some finite time range 0 # t # T because particles are

Thus, two of the conservation properties of the semi- subject to finite accelerations.
discrete method, Eq. (54), are natural consequences of The bracket for these equations, presented in a trivially
the numerical bracket which has been inherited by the different form in Ref. [1], is
collocation method from the Poisson bracket for the ex-
act system.

hhF, Gjj 5 O
a
E1

21
E1

21

1
ma

dF
dfa

(x, v) HdG
dfa

, faJ (x, v) dx dv

5. COLLOCATION METHODS FOR THE
VLASOV–MAXWELL EQUATIONS

1 4f O
a

qa

ma
E1

21
E1

21

dF
dE

(x)
­fa

­v
(x, v)

dG
dfa

(x, v)

The previous examples have all been based on the trivial
bracket defined by I 5 ­/­x. A more complex bracket 2

dG
dE

(x)
­fa

­v
(x, v)

dF
dfa

(x, v) dx dv, (60)
structure underlies the Vlasov–Maxwell [18] equations of
plasma kinnetic theory, and in this section I shall use this
to further illustrate the ideas about numerical brackets where
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The collocation points in x will be taken to be theHdG
df

, fJ5
­f
­v

­

­x
dG
df

2
­f
­x

­

­v
dG
df

(61) Nx 1 1 roots x0 , x1 , ..., xNx
of the polynomial (1 2 x2)

dPNx
/dx, and the collocation points in v will be the roots

v0 , v1 , ..., vNv
of (1 2 v2) dPNv

/dv; all the scale factors thatis the canonical single particle Poisson bracket. The Hamil-
arise by mapping the problem domain into 21 # x # 1tonian for the Vlasov–Maxwell dynamics is the sum of the
and 21 # v # 1 can be absorbed into the quadratureparticle and field energies:
weights and collocation derivative matrix elements. The
collocation derivative matrices in x and v will be denoted
Dx(i, k) and Dv( j, l), respectively; except possibly for trivialH ( f, E) 5 O

a
E1

21
E1

21

mav2

2
fa dx dv 1 E1

21

1
8f

E2 dx. (62)
scaling factors, these matrices are given by Eq. (52). The
quadrature weights for x and v integration will similarly

Some of the more interesting constants of the motion be denoted wx
i and wv

j . As mentioned in Section 4.2, the
for the Vlasov–Maxwell system besides the Hamiltonian Legendre–Gauss–Lobatto weights and collocation deriva-
include the number of particles in a species, tive satisfy the anti-symmetry property of CP 4.1, except

at the system boundary (where we do not want them to);
this will be enough to make the collocation bracket, writtenN a 5 E1

21
E1

21
fa dx dv, (63)

out explicitly below, anti-symmetric except for boundary
terms. Therefore, whatever approximate Hamiltonian we

which is a Casimir, and total linear momentum of the par- use to define the dynamics, it will be conserved, except for
ticles, inflow and outflow at the system boundaries. Furthermore,

both CP 4.2 and CP 4.3 will be satisfied for N a and Sa ,
respectively, so a method based on Legendre–Gauss–M 5 O

a
E1

21
E1

21
mavfa dx dv, (64)

Lobatto collocation will conserve particles and the square
integral of the distribution function, again, except for phys-
ically correct inflow and outflow.which is a momentum in the formal sense, corresponding

Because of the large number of indices now requiredto the invariance of the Hamiltonian under spatial transla-
(for space x, velocity v, and species) I shall dispense withtions. It is important to note, however, that the momentum
the summation convention; the only sums are those explic-is a constant only if the constraint given by Eq. (59) holds;
itly written, and the placement of indices will be dictatedformally, M only generates the group of translations (act-
by readability. The structure functions of the collocationing by f(x, v) ° f(x 2 t, v), E(x) ° E(x 2 t)) when Eq.
bracket between two distribution function values f i j

a and(59) is satisfied. Equation (59), Coulomb’s Law, implies
f kl

b is determined by the first double integral in Eq. (60).that the force between two particles depends only on the
This term for species a generates a piece of I that looks likedistance between them, and their location with respect to

some external reference frame is immaterial. This means
that the center of mass of the system will feel no force

I ( fa) 5
­fa

­u
­

­x
2

­fa

­x
­

­u
. (66)and will simply translate at a constant velocity. Another

important set of constants is the Casimirs

The structure function between f i j
a and f kl

b is zero if
a ? b; otherwise,S a 5 E1

21
E1

21
f 2

a dx dv, (65)

whose preservation is attractive in part because it provides [ f i j
a , f kl

a ]c 5
1

mawx
kwv

l
FdljDx(i, k) ONv

m50
Dv( j, m) f im

a

(67)
stability for the numerical method (which the physical en-
ergy does not, in the absence of a guarantee of positiveness
of the numerical approximations to the distribution func- 2 dkiDv( j, l) ONx

n50
Dx(i, n) f nj

a G.
tions).

I have previously described a method [19] and presented
numerical results based on Legendre–Gauss–Lobatto col- These are most easily computed by putting the weight

functions into the exact bracket and replacing the sums bylocation for the Vlasov–Maxwell equations. That method
conserved energy, particles, and momentum even for dis- the quadrature rule, as described in Eq. (44). Alternately,

the collocation approximation to the operator I ( fa) in Eq.crete time, but it was not noted there that the preservation
of these conservation laws could be understood in terms (66) can be used and divided by the quadrature weights

wx
k and wv

l as in Eq. (43). Note again that these structureof the bracket structure of the system. In this section I
wish to make this connection clear. functions are anti-symmetric only at interior points; at
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boundary points, i 5 k 5 0, i 5 k 5 Nx , j 5 l 5 0, or j 5 dEi

dt
5 2 4f O

a

qa ONv

j50
wv

j vj f i j
a (75)l 5 Nv , the structure function is not anti-symmetric. This

is as it should be so that inflow and outflow are accounted
for. The bracket between the field and the distribution which is the form that was written down directly as a
function comes from the second double integral in Eq. collocation approximation in Ref. [19]. In writing these,
(60), which generates more species specific pieces of I of it has been noted that the collocation derivative exactly
the form differentiates a constant in x, on Dx(i, n) 5 0, and a qua-

dratic in v, om Dv( j, m)v2
m/2 5 vj , assuming only that

Nx $ 1 and Nu $ 2. Equations (74) and (75) correctly
conserve H̃, Ñ a 5 oi j wx

i wv
j f i j

a , and S̃ a 5 oi j wx
i wv

j ( f i j
a )2

I ( fa) 1
dG

dfa

dG

dE
25

4fqa

ma 1 2
­fa

­v
dG

dE

E1

21

­fa

­v
dG

dfa
du2. (68) because of CP 4.1, CP 4.2, and CP 4.3, again provided that

Nx $ 1 and Nu $ 2, and of course, boundary terms will
appear to account for inflow and outflow. These conserva-
tion properties were observed in the simulation described
in Ref. [19], which made use of a second-order Runge–Using the collocation approximation to this operator, and
Kutta time discretization; understanding systematicallyagain raising the second index, yields the structure func-
what properties of this discretization were responsible fortions
these conservation properties was in fact part of the moti-
vation for the work described in this paper.

[ f i j
a , Ek]c 5 2dik

4f
wx

k

qa

ma
ONv

m50
Dv( j, m) f im

a (69) Momentum conservation is also preserved. Note that
because the equations conserve particles they are still con-
sistent with Coulomb’s law; that is, if the discrete Cou-

[Ek, f i j
a ]c 5 dki

4f
wx

i

qa

ma
ONv

m50
Dv( j, m) f km

a . (70) lomb’s law

These terms are anti-symmetric even at boundary points ONx

k50
Dx(i, k)Ek 5 4f O

a

qa ONv

j50
wv

j f i j
a (76)

because this part of the exact bracket is explicitly anti-
symmetric, independent of the details at the boundary.

is satisfied initially, then it will be satisfied for all time,For the Vlasov–Maxwell equations a natural approxima-
except for boundary terms arising from particles accelerat-tion to the Hamiltonian is
ing out of the system at the velocity boundaries v 5 61.
Using this it can be directly checked that [ M̃ , H̃ ]c is given
purely by boundary terms, indicating that momentum is

H̃ 5 O
a
Oi5Nx

j5Nv

i50
j50

mav2
j

2
f i j

a wx
i wv

j 1
1

8f O
Nx

i50
(Ei)2wx

i . (71) constant, except for the physical loss of momentum
through the system boundaries.

The nonconservation of energy in a plasma physics simu-
From this we can compute the derivatives lation is usually called grid heating or self-heating, while

the nonconservation of momentum implies the existence
of a net grid force. The method described here, based on­H̃

­f i j
a

5
mav2

j

2
wx

i wv
j (72) the Hamiltonian structure of the equations, has neither

grid heating nor a net grid force. The only reason energy,
momentum, particles, or S a is not exactly constant is thatand
particles can enter and leave the system through its physi-
cal boundaries.­H̃

­Ei 5
1

4f
Eiwx

i . (73) There have been other methods for plasma kinetic simu-
lation which conserve energy, and Lewis [20, 21] has in fact
described a class of Lagrangian (characteristic or particle-

The quadrature weights in these derivatives will be can-
following) methods that are derived from the principle of

celed out by their inverses appearing in the structure func-
least action. Through the introduction of suitable general-

tions of the numerical collocation bracket, and the discrete
ized momenta this naturally results in a system of equations

version of the Vlasov–Maxwell equations will then be
that are in canonical Hamiltonian form. More recently
Scovel and Weinstein [22] have developed a class of meth-
ods that are based on a numerical bracket that satisfiesdf ij

a

dt
5 2vj ONx

k50
Dx(i, k) f kj

a 2
qa

ma
Ei ONv

l50
Dv( j, l) f il

a (74)
the Jacobi identity. Both of these methods are essentially
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particle methods and, as such, rather different in character methods, will be of use to those interested in examining
and understanding the conservation properties of existingfrom the Eulerian discretizations described here. Scovel

and Weinstein [22] in fact suggest that it is not possible to methods, or in designing methods that possess desired con-
servation properties.develop a discretization of the Vlasov–Poisson system that

inherits a good (Jacobi) Poisson bracket by using discretiz-
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